Axiom of choice and chromatic number: examples on the plane

نویسندگان

  • Alexander Soifer
  • Saharon Shelah
چکیده

In our previous paper (J. Combin. Theory Ser. A 103 (2) (2003) 387) we formulated a conditional chromatic number theorem, which described a setting in which the chromatic number of the plane takes on two different values depending upon the axioms for set theory. We also constructed an example of a distance graph on the real line R whose chromatic number depends upon the system of axioms we choose for set theory. Ideas developed there are extended in the present paper to construct a distance graph G2 on the plane R ; thus coming much closer to the setting of the chromatic number of the plane problem. The chromatic number of G2 is 4 in the Zermelo– Fraenkel–Choice system of axioms, and is not countable (if it exists) in a consistent system of axioms with limited choice, studied by Solovay (Ann. Math. 92 Ser. 2 (1970) 1). r 2004 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Axiom of choice and chromatic number of Rn

In previous papers (J. Combin Theory Ser. A 103 (2003) 387) and (J. Combin. Theory Ser. A 105 (2004) 359) Saharon Shelah and I formulated a conditional chromatic number theorem, which described a setting in which the chromatic number of the plane takes on two different values depending upon the axioms for set theory.We also constructed examples of a distance graph on the real line R and differe...

متن کامل

On characterizations of the fully rational fuzzy choice functions

In the present paper, we introduce the fuzzy Nehring axiom, fuzzy Sen axiom and weaker form of the weak fuzzycongruence axiom. We establish interrelations between these axioms and their relation with fuzzy Chernoff axiom. Weexpress full rationality of a fuzzy choice function using these axioms along with the fuzzy Chernoff axiom.

متن کامل

A Unit Distance Graph with Ambiguous Chromatic Number

Saharon Shelah and Alexander Soifer recently presented some examples of infinite graphs whose chromatic numbers depend on the axioms chosen for set theory. The existence of such graphs may be relevant to the famous Chromatic Number of the Plane problem. In this paper a new example of a graph with ambiguous chromatic number is presented. This graph is a unit distance graph in the plane and hence...

متن کامل

Axiom of choice and chromatic number of the plane

1950 the 18-year old Edward Nelson posed the problem of finding χ (see its history in [S]). A number of relevant results were obtained under additional restrictions on monochromatic sets. K. Falconer, for example, showed [F] that χ is at least 5 if monochromatic sets are Lebesgue measurable. Amazingly though, the problem has withstood all assaults in general case, leaving us with embarrassingly...

متن کامل

On the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs

‎For a coloring $c$ of a graph $G$‎, ‎the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively‎ ‎$sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$‎, ‎where the summations are taken over all edges $abin E(G)$‎. ‎The edge-difference chromatic sum‎, ‎denoted by $sum D(G)$‎, ‎and the edge-sum chromatic sum‎, ‎denoted by $sum S(G)$‎, ‎a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 105  شماره 

صفحات  -

تاریخ انتشار 2004